
Stimulus-response curves of a neuronal model for noisy subthreshold oscillations
and related spike generation

Martin Tobias Huber1 and Hans Albert Braun2

1Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmannstraße 8, D-35033 Marburg, Germany
2Institute of Normal and Pathological Physiology, University of Marburg, Deutschhausstraße 1, D-35033 Marburg, Germany

�Received 27 September 2005; revised manuscript received 21 February 2006; published 27 April 2006�

We investigate the stimulus-dependent tuning properties of a noisy ionic conductance model for intrinsic
subthreshold oscillations in membrane potential and associated spike generation. Upon depolarization by an
applied current, the model exhibits subthreshold oscillatory activity with an occasional spike generation when
oscillations reach the spike threshold. We consider how the amount of applied current, the noise intensity,
variation of maximum conductance values, and scaling to different temperature ranges alter the responses of
the model with respect to voltage traces, interspike intervals and their statistics, and the mean spike frequency
curves. We demonstrate that subthreshold oscillatory neurons in the presence of noise can sensitively and also
selectively be tuned by the stimulus-dependent variation of model parameters.
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I. INTRODUCTION

Many neurons in the central and peripheral nervous sys-
tem exhibit a characteristic electrical behavior on depolariz-
ing stimuli. This is characterized by intrinsic subthreshold
membrane potential oscillations with related action potential
generation when the oscillations reach the spike threshold
�1–11�. Such oscillations are an intrinsic property of the neu-
rons and result from the interplay of different ionic conduc-
tances �3–6�. In addition, stochastic fluctuations, which are
naturally present due to the inherent noisiness of neurons,
play an important role for the response behavior. When os-
cillations operate close to the spike threshold, the noise can
essentially determine whether a spike is triggered or not, and
even little stochastic fluctuations can initiate action potential
generation �8,12–18�.

The role of subthreshold oscillations for neuronal function
is different depending on location and function of the in-
volved neuron. That is, a peripheral neuron or sensory recep-
tor responsible for sensing environmental sensory stimuli can
use stimulus-dependent modulations of subthreshold oscilla-
tions for that purpose �8�. Probably the most interesting ex-
ample for such encoding with oscillations and noise are
shark electroreceptors. These receptors can encode electrical
and thermal stimuli, and it was demonstrated experimentally
that these electroreceptors do use intrinsic subthreshold
membrane potential oscillations in cooperation with stochas-
tic fluctuations to improve their encoding sensitivity to these
stimuli. Moreover, selective stimulus-dependent modulation
of the spiking probability per oscillation cycle and oscillation
frequency is used for the differential encoding of the two
sensory modalities �8�. This is because electrical stimuli
rather selectively modulate the spiking probability, whereas
temperature alters both the spiking probability and the fre-
quency. Such temperature-dependent effects on neuronal os-
cillations are also known from temperature encoding by pe-
ripheral thermoreceptors �12,13,16,19,20�.

Neurons located in central structures, such as the entorhi-
nal cortex �6� or amygdala �4,5�, are supposed to use the

oscillations for the timing of collective rhythmic behaviors,
e.g., the limbic theta rhythm and the generation of synchro-
nized responses �2,3,21–24�. Fine tuning of oscillatory re-
sponses by neuromodulatory substances, e.g., due to cholin-
ergic and dopaminergic alteration of oscillatory dynamics,
were described �25,26� and could also be used for the proper
adjustment of signal encoding properties in the central ner-
vous system. The importance of noise for subthreshold oscil-
lations was considered also with regard to central neurons
�18,27�.

However, subthreshold oscillations can also become im-
portant under pathological conditions. This is the case with
pain-sensitive �nociceptive� dorsal root ganglion neurons
�peripheral sensory neurons�. In such nociceptive neurons,
previous nerve injury enhances subthreshold oscillatory ac-
tivity and increases the number of subthreshold oscillatory
cells. These subthreshold oscillations seem necessary for sus-
tained spiking and ectopic spike discharge, and hence the
development of neuropathic pain states �7,9,10,28–32�. Inter-
estingly, spike patterns and interspike interval histograms
�ISIHs� recorded from such injured sensory neurons �10� re-
semble the ones recorded from shark electroreceptors and
subthreshold oscillating thermoreceptors, again indicating a
significant influence of stochastic fluctuations on oscillatory
responses �8�. The productive role of stochastic fluctuations
and specifically stochastic resonance for sensory encoding
and biological systems in general has attracted much atten-
tion since the first paper on stochastic resonance in a sensory
receptor was published by Moss and co-workers �33�. Up
until now, a multitude of work addressed the role of noise in
biological systems and studies include the molecular, cellu-
lar, systems, and even behavioral level �8,12,18,33–56�. In
addition, recent experimental studies have begun to empha-
size the role of random synaptic background activity for the
modulation of neuronal sensitivity and gain control in corti-
cal neurons �57–59�, and very recently noise-dependent lin-
earization of spike-burst transitions in thalamic neurons
could be demonstrated experimentally �60�.

The effect of tuning of noisy subthreshold oscillations by
the alteration of ionic conductance parameters and the result-
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ing effects on signal encoding and neuromodulation have
attracted less interest, perhaps with the exception of impulse
pattern modifications in peripheral thermoreceptors
�12,16,19�. The situation, however, is different from stochas-
tic resonance effects due to the modulation of the noise in-
tensity, and it is different from the gain modulation and sen-
sitivity adjustment by noise-dependent linearization of
stimulus-response curves. In our case, the tuning is caused
by the intrinsic parameters of the oscillations. The noise is
needed to get smooth, continuous, and more linear stimulus-
response curves, but the actual noise intensity is not of criti-
cal importance. We note in passing that we gave a brief re-
port on stochastic resonance effects in an almost identical
model �56�. For a thorough account of stochastic resonance
in different types of oscillatory neurons, see the paper by
Longtin �61�.

For the reasons given above, we concentrate in the present
paper on response behaviors and tuning curves resulting
from modulation of neuronal oscillations in the presence of a
fixed noise level. We use a computational approach and con-
sider the modulatory features of a minimal, yet physiologi-
cally plausible, ionic conductance model for noisy subthresh-
old oscillations and associated spiking, which is able to
reproduce some of the essential encoding and modulatory
properties observed experimentally. The paper is organized
as follows. We start with the situation where the depolarizing
electrical current application leads to noisy subthreshold os-
cillations and action potentials in our model neuron, and
demonstrate the characteristic voltage traces, interspike inter-
val plots, and interspike interval histograms. In the following
sections, we then investigate systematically how the varia-
tion of the applied current Iapp, the noise intensity D, the

FIG. 1. Noisy subthreshold os-
cillations and related spike gen-
eration generated by the model.
�a� Time sequence of the mem-
brane voltage, �b� time plot of
successive interspike intervals
from a longer simulation run,
and �c� the corresponding ISIH.
Simulation time t=1000 s,
Iapp=1.3 mA/cm2, noise intensity
D=0.1.
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subthreshold potassium conductance gKs, and the tempera-
ture T change the model neuron’s responses with respect to
voltage traces, interspike intervals �ISIs�, ISIHs and corre-
sponding mean spike frequency curves. We end with a short
summary and concluding remarks.

II. MODEL

A. Physiological background

Our model is designed to account for a specific type of
neuronal impulse generation which—as described above—is
a mixture of subthreshold membrane potential oscillations
and associated spike generation. In experimental recordings,
this behavior appears as a periodic spiking interrupted by
random skipping of spikes at integer multiples of a basic
oscillation period, which leads to characteristic multimodal
interspike interval histograms �a typical example is shown in
Fig. 1�. It is reasonable to assume and partly known that
different ionic mechanisms can generate this behavior as it
can be seen in a diversity of neurons in specific situations
�e.g., cold receptors at high temperatures�, and as it is found
in very different regions and systems of the brain and in very
different biological species, such as mammals or shark elec-
troreceptors �e.g. �1–8��. Remarkably, at least some of these

neurons operate with rather simple sets of ionic conduc-
tances, i.e., a persistent sodium conductance and a subthresh-
old potassium conductance. For example, neither the neurons
in the entorhinal cortex nor shark electroreceptors seem to
need calcium dynamics, e.g., calcium-dependent potassium
conductances, which are a major component in many other
neurons with neuronal oscillations—especially for slow-
wave bursters �see e.g., �13,16� and literature therein for the
work of many other authors�.

It is the aim of this study to evaluate what encoding prop-
erties can be achieved in the presence of noise with such a
minimal set of ionic conductances. As an emphasis is placed
on ionic conductances, we do not consider reduced models,
such as integrate-and-fire models or FitzHugh-Nagumo mod-
els �62�, but use the classical Hodgkin-Huxley-type
approach—although in a simplified version—with explicit
relations to specific ion currents as they can be recorded
experimentally. Simplifications in comparison to other exist-
ing HH-type models are, particularly with respect to the typi-
cal HH-like action potential conductances �instantaneous ac-
tivation of the fast sodium conductance, no inactivation of
conductances�, as not the precise representation of the action
potentials themselves but the temporal patterns of impulse
generation and their modulation are of major interest in this
study. We also have eliminated all exponents for the activa-

FIG. 2. Effect of depolarizing
applied current Iapp. �a� Voltage
traces and �b� ISIHs for Iapp=1.2,
1.5, and 1.8 mA/cm2, �c�
time plot of successive ISIs and
�d� mean spike frequency �F�
in response to a ramp-shaped
change of the applied current
�time�5000 s, increment �Iapp

=0.0002 mA cm−2 ms−1, noise in-
tensity D=0.1�.
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tion variables, which is a further simplification of a previous
version of the model �39,56�. The resulting minimal ionic
model can realistically represent noisy subthreshold oscilla-
tions and related spiking when compared to the experimental
data as well to models using a more detailed HH-formalism
�18,24�. A similar simplification approach was used by us
with respect to calcium-dependent oscillations and bursting
in cold receptors, e.g. �19� compared to �16�.

B. Ionic conductances

Our model consists of two sets of simplified sodium and
potassium conductances operating at two different membrane
potentials and two different time scales: A conventional
Hodgkin/Huxley-type spike encoder is represented by rapid
high-voltage activating gNa and gK. Also, subthreshold oscil-
lations are modeled here as only voltage-dependent conduc-
tances, which are—according to data from the entorhinal
cortex �6�—a persistent sodium conductance, gNap, and a
subthreshold potassium conductance, gKs. With an additional
term for external current application and noise, this gives the
following membrane equation:

CMdV/dt = − I1 − INap − IKs − INa − IK + Iapp + � , �1�

where CM =1 �F/cm2 is the membrane capacity, V is
the membrane voltage, I1=g1 �V−V1� is a leak current with
gl=0.1 mS/cm2, and Vl=−60 mV. Iapp is the injected cur-
rent and � is the Gaussian white noise with the properties
���t�=0� and ���t���s��=2D��t−s�, which determines all of
its statistical features.

The voltage-dependent currents INap, IKs, INa, and IK are
modeled as

Ii = �giai�V − Vi� , �2�

where � is a temperaturelike scaling factor, gi are the respec-
tive maximum conductances �i denotes Na, Nap, K, Ks�, ai
are the voltage-dependent activation variables, V is the mem-
brane potential, and Vi is the respective Nernst potential. The
activation variables are given as

dai/dt = ��Fi − ai�/	i �3�

with

Fi = 1/�1 + exp�− si�V − V0,i��� , �4�

where � is a temperaturelike scaling factor, 	i are time con-
stants, si is the slope, and V0,i is the half-activation potential.
Activation of INa is instantaneous, thus aNa=aNa
. The
temperaturelike scaling factors � �for ionic currents� and
� �for ionic kinetics� are given as �=3.0�T−25�/10 and
�=1.3�T−25�/10 with T as the temperature in °C �63�.

C. Stochastic influences in the model

Membrane noise consists of thermal noise, conductance
noise including synaptic noise, and electrogenic pump noise.
The situation is complicated as in experimental impulse re-
cordings of sensory receptors; the different noise sources
cannot be distinguished so far and any specific noise realiza-
tion at the current state of physiological knowledge is there-

fore purely arbitrarily. However, we can take advantage of
the fact that the specific noise origin seems to be of minor
relevance, at least for the purpose of this study, which fo-
cuses on a particular impulse pattern. These patterns, indeed,
can be achieved with quite different noise realizations—
provided the appropriate dynamics with subthreshold oscil-
lations. At the level of impulse patterns and tuning curves,
which we consider here, qualitatively identical responses can
be obtained with quite different noise implementations as we
recently demonstrated by an orientating comparative analysis
of the effects of current noise and conductance noise �64�.
Accordingly, we followed the discussion and approach given
by Longtin and Hinzer �16� and used a simple white-noise
term in the membrane equation, which includes the different
noise sources as a first approximation.

The system of equations was solved numerically by the
use of the forward Euler integration method with a step size
adjusted to 0.1 ms. The white noise was generated with the
Box-Mueller algorithm and implemented in the Euler version

FIG. 3. �a� Mean spike frequency F �Hz� versus Iapp �mA/cm2�
for different values of the noise intensity �D=0, 0.1, 0.2, 0.4, 0.8,
and 1.6�. �b� Mean spike frequency F versus D for different values
of the applied current �Iapp=1.2, 1.3, 1.35, 1.4, 1.5, and
1.6 mA/cm2�.
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of the integration as described in Fox et al. �65�. Numerical
parameter values: VNa=50, VK=−90, gNa=2.0, gK=2.0,
gNap=0.4, gKs=2.0, sNa=sK=sNap=sKs=0.25, 	K=2.0, 	Nap
=10, 	Ks=50, V0Na=V0K=−25, and VNap=V0Ks=−40. The
units of measure are in ms, mV, mS/cm2, and mA/cm2.

III. RESULTS

Our starting point is the model depolarized by an applied
current Iapp which results in subthreshold oscillations of the
membrane potential �Fig. 1�. In this situation, noise becomes
important for spike generation because it essentially deter-
mines whether or not a spike is triggered. Without noise, the
model would remain completely subthreshold in the simula-
tions shown in Fig. 1. With noise, we observe a characteristic
response pattern characterized by subthreshold oscillations,
and oscillations that occasionally trigger action potentials. In
the plot of successive interspike intervals, this behavior is
reflected by separated bands of intervals �Fig. 1�b��. The
ISIH shows the well-known multimodal interval distribution
with interval peaks located at approximate integer multiples
of a basic oscillation period �Fig. 1�c��.

The amplitude of the oscillations and hence the likelihood
for spike generation depend on the level of depolarizing cur-
rent Iapp �Fig. 2�. At low levels of Iapp, a spike is triggered

only rarely whereas on higher levels of Iapp an oscillation
only occasionally fails to trigger a spike �Fig. 2�a��. Accord-
ingly, in the ISIHs, the first interval peak representing the
basic oscillation period increases with increasing depolariza-
tion and the multimodality decreases �Fig. 2�b��. The con-
tinuous ramplike change of Iapp and its effect on the oscilla-
tory responses are demonstrated in the time plot of interspike
intervals �Fig. 2�c��. First, intervals are scattered to long du-
rations and are more or less triggered randomly by the noise.
In intermediate ranges, distinctive bands of intervals occur
resulting from the depolarization-induced oscillations and as-
sociated periodic spike generation. Finally, when almost all
oscillations reach spike threshold, the intervals become con-
centrated on the band which represents the basic oscillation
period.

In the whole range from occasional spikes to fully peri-
odic spiking, the oscillation frequency is not much affected.
This is indicated by an almost unchanged location of the
interspike interval peaks and bands, respectively �Figs. 2�b�
and 2�c��. The reason is that the model operates close to the
spike threshold where small changes in membrane depolar-
ization have significant effects on the probability of spike
generation without similar pronounced effects on the oscilla-
tion frequency. This effect is also reflected in the averaged
measure of the mean spike frequency curve. In the mean
spike frequency �F� versus applied current �Iapp� plot, this is

FIG. 4. Effect of potassium
conductance gKs. �a� Voltage
traces and �b� ISIHs for gKsmax

=2.1, 2.0, and 1.9 mS/cm2, �c�
time plot of successive ISIs, and
�d� mean spike frequency �F�
in response to a ramp-shaped
change of gKsmax �time�5000 s,
�gKsmax=8�10−5 mS cm−2 ms−1,
noise intensity D=0.1, Iapp

=1.5 mA/cm2�.
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the range where the increase in F is most pronounced �Fig.
3�a�� and, where under fully deterministic conditions �D=0;
dashed curve in Fig. 3�a��, F jumps in a steplike way when
Iapp crosses a threshold value �Iapp�1.34 mA/cm2 in our
model�. The noise smoothes the steplike nonlinearity of the
deterministic curve. Increasing the noise intensity reduces
the slope and, in this way, linearizes the relation. The re-
sponse range increases in that way, however, at the cost of
the response sensitivity. Figure 3�a� also shows that increas-
ing the depolarizing current monotonically also increases the
spike frequency in the suprathreshold response range. The
increase of F in the suprathreshold range now results from an
Iapp-induced acceleration of the oscillation frequency and not
from modulation of the spiking probability as is the case in
the range close to the spike threshold.

The effect of the noise intensity on the mean spiking fre-
quency for different fixed values of Iapp is shown in Fig. 3�b�.
Two principally different behaviors are observed depending
on whether the model is in a subthreshold or suprathreshold
state. In the subthreshold range, F rises monotonically with
the noise intensity. Here, the noise can initiate spike genera-
tion in otherwise subthreshold oscillations, and F rises as
higher noise intensities lead to a higher spiking probability.
In the suprathreshold range, the situation is different as F
initially decreases with increasing noise intensity and in-
creases again with higher levels of noise. In the suprathresh-
old situation, some noise can suppress the spiking in former
spike-triggering oscillations. However, with high noise lev-
els, the excitatory effect of the noise becomes dominant and,
accordingly, F rises monotonically. In both cases, the initial
increase or decrease in the mean frequency is most pro-
nounced at low-to-moderate noise intensities, where the
noise interacts with the oscillatory dynamics �Fig. 3�b��.
High noise intensities then overwhelm the dynamics, destroy
the oscillations, and spiking is no longer related to an under-
lying periodic process.

We next consider the modulatory effect of ionic conduc-
tances underlying the subthreshold oscillations. As an ex-
ample, we chose the subthreshold potassium conductance gKs
and vary the maximum conductance gKsmax. Experimentally,
this would correspond to the application of potassium chan-
nel blockers, such as 4-aminopyridine or, physiologically, to
the action of channel-blocking neuromodulatory substances.
Figure 4 shows the change of interspike intervals and the
mean spike frequency in response to a ramplike change of
gKsmax �Figs. 4�c� and 4�d�� together with voltage traces and
ISIHs at three different values of gKsmax �Figs. 4�a� and 4�b��.
A reduction of the gKsmax has a depolarizing effect on the
membrane voltage. In turn, subthreshold oscillations develop
�gKsmax=2.1 mS/cm2� leading to the characteristic multimo-
dality of the ISIHs and interspike interval plots. By further
decreasing gKsmax, the subthreshold oscillations rise in ampli-
tude until finally periodic spiking occurs. Correspondingly,
the ISIHs and interspike plots change to unimodal distribu-
tions �gKsmax=2.0− �1.9 mS/cm2�.

The mean spiking frequency F increases monotonically
and approximately sigmoidal with decreasing gKsmax values
�Figs. 4�d� and 5�a��. The response range then can be tuned
to lower or higher gKsmax values by respective adjustment of
the amount of Iapp, that is by adjusting the preactivation level

with Iapp �Fig. 5�a��. Higher values of Iapp shift the F curve to
higher gKsmax values and vice versa. Similarly, the mean
spiking frequency, dependent upon Iapp can be tuned to lower
or higher values by adjusting the gKsmax, that is by adjusting
the preactivation level with the gKs �Fig. 5�b��. Reducing the
gKsmax decreases the total amount of repolarizing ionic cur-
rent, and for this reason less applied current is needed for
membrane depolarization. Accordingly, the F curve is shifted
to lower Iapp values. Increasing the gKsmax has the opposite
effect, because it increases the repolarizing ionic current and
therefore the amount of Iapp needed for depolarization.

The last part of the results considers how temperature
scaling of the ionic conductances alters the responses of the
model. Voltage traces and ISIHs at three different steady
temperatures are shown in Figs. 6�a� and 6�b�. A time plot of
the interspike intervals in response to a ramplike temperature
change and the corresponding mean spiking frequency is
demonstrated in Fig. 6�b�. Temperature scaling predomi-
nantly alters the time constants 	i of the ionic currents and, to
a minor degree, the values of the maximum ionic currents
�see Eqs. �2� and �3� in Sec. II�. The temperature effect on

FIG. 5. �a� Mean spike frequency F �Hz� versus gKsmax

�mS/cm2� for different values of applied current �Iapp=1.1, 1.3, 1.5,
1.7, and 1.9 mA/cm2�. �b� Mean spike frequency F �Hz� versus Iapp

�mA/cm2� for different values of gKsmax �1.8, 1.9, 2.0, 2.1, and
2.2 mS/cm2�.
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the activation time constants in turn has a pronounced influ-
ence on the frequency of the subthreshold oscillations and
action potentials �Fig. 6�a��. The effects on amplitudes of
oscillations and action potentials are to some extent compen-
sated for by the changes of the maximum ionic currents,
which decrease with decreasing T and vice versa. The domi-
nant effect on the oscillation frequency leads to characteristic
changes in the ISIHs and an ISI plot �Figs. 6�b� and 6�c��.
The acceleration of the oscillation frequency with rising tem-
perature increases the number of subthreshold oscillations.
This is because oscillations then become too fast to initiate
action potentials during an oscillation cycle �Figs. 6�a� and
6�b��. In the ISI time plot, the bands of intervals successively
change to shorter interval durations and, with high tempera-
tures, a scattering to longer interval durations occurs. The
latter results from the accelerating oscillations, which more
and more fail to trigger spikes �Fig. 6�c��.

The acceleration of the oscillation frequency with associ-
ated changes in the spiking probability has a characteristic
effect on the mean frequency curve, which is very different
from the stimulus-response relations obtained by the varia-
tion of Iapp or gKsmax. In the case of temperature variation,
F�T� first rises with increasing temperature, but then passes
through a maximum and declines again on further increasing
T �Figs. 6�d� and 7�a��. The rise in F is due to the increase in

the oscillation frequency, and which in turn results from
temperature-accelerated ionic kinetics. The following de-
crease in F results from the increasing number of faster and
faster subthreshold oscillations, which successively fail to
trigger spikes. The maximum value of F, as well as the slope
and response range of the F�T� curve, also depends on the
level of depolarizing current Iapp �Fig. 7�a��. When the model
neuron is in a more depolarized state, oscillatory activity is
more pronounced and suprathreshold. In this case, oscilla-
tions can become much faster �and F much higher� until they
fail to trigger spikes when becoming subthreshold �e.g.,
Iapp=2.5 mA/cm2 versus Iapp=1.3 mA/cm2�. It should be
noted that noise enlarges the response range with respect to T
as noise can induce spiking in subthreshold oscillations.
Without noise, F�T� would rise monotonically up to a certain
limit and then would immediately drop to zero when oscil-
lations become subthreshold.

The corresponding F versus Iapp curves at different fixed
temperature levels also reflect the temperature-dependent
variation of the oscillation frequency and associated spiking
probability per oscillation cycle �Fig. 7�b��. The F-Iapp curves
increase monotonically with increasing Iapp. The obtainable
maximum frequencies depend on the applied temperature
range, and higher F values are achievable with higher tem-
peratures. However, high-temperature levels need higher lev-

FIG. 6. Effect of temperature.
�a� Voltage traces and �b� ISIHs
for T=15, 25, and 35 °C, �c� time
plot of successive ISIs, and �d�
mean spike frequency �F� in re-
sponse to a ramp-shaped change
of T �time � 5000 s, increment
�T=0.006 °C/ms, noise intensity
D=0.1, and Iapp=1.5 mA/cm2�.
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els of depolarization �larger Iapp� because of the very short
suprathreshold periods of the fast oscillations �Fig. 7�b�: T
=35 °C�. Further increases in Iapp in the high-temperature
range then result in a steep increase of the mean spike fre-
quency, which is much steeper than the ones obtained at
lower temperature ranges. These results demonstrate that the
temperature-dependent modulation of noisy oscillations �i.e.,
oscillation frequency and spiking probability� has pro-
nounced effects on temporal response patterns �voltage
traces, ISIs, and ISIHs� as well as on the mean spike fre-
quency curve and its respective slope �or gain�.

IV. SUMMARY AND CONCLUSIONS

Our results presented here demonstrate that a minimal
ionic conductance model for noisy subthreshold oscillations
and related spike generation exhibits interesting modulatory
features on physiologically relevant parameter variations.
Modulatory effects thereby occur in the temporal response
patterns �voltage traces and ISI distributions� as well as when

the mean spike frequency is considered as a measure for
signal or stimulus encoding. All of the described effects were
obtained by modulation of deterministic parameter values
�i.e., Iapp, gKsmax, or the temperature scaling coefficients�
which resulted in the variation of the oscillation frequencies
and amplitudes and associated changes in the spiking prob-
ability per oscillation cycle.

The full range of responses is thereby only possible be-
cause the model includes noise. This is because only the
modulation of noise-induced transitions from subthreshold
oscillations to spike-triggering oscillations allows for the
pronounced changes in responses, even on small parameter
changes demonstrated by the changes in spike frequency and
ISI statistics. However, although noise is an essential ingre-
dient, the observed modulatory effects resulting from the
modulation of applied current, ionic conductance levels, or
temperature scaling are not critically dependent on the actual
noise intensity. That is, similar tuning behaviors are obtained
at very different noise intensities indicating the robustness of
the observed behaviors. In addition to this, a variety of
modulatory effects can be expected from tuning the noise
intensity, such as stochastic or coherence resonance effects,
and linearization of responses pointing to even more poten-
tial modulatory capabilities resulting from the interplay of
oscillations and noise �see, e.g., �66–69��. One such modu-
latory effect is gain control �change of the slope of the re-
sponse curve� by synaptic background activity �“synaptic
noise”� which in recent years has attracted much attention in
modeling �57� and experimental �58–60� studies of cortical
neurons. Although our study was not intended to account for
the complex mechanisms involved in altered synaptic activ-
ity and our simulations with altered noise intensity were
more intended to show the robustness of the response curves
with respect to noise, it is notable that even the simple model
with white noise can account quite well for some of the
experimental findings �see e.g., Fig. 1 in �60��. A further
elucidation of the basic biophysical principles underlying
such gain modulation should therefore be of interest.

Many studies have addressed the importance of noise and,
in particular, noise tuning in neurons and neuronal models,
and some studies have also addressed deterministic sub-
threshold oscillations �3,18,24�. Our study shows that the
tuning of the oscillations themselves or, more correctly, the
deterministic parameters underlying the oscillatory re-
sponses, plays an equally important role for the overall en-
coding and modulatory properties. In addition, the effects
demonstrated for a simple ionic conductance model have
their real counterparts in biology. The deterministic param-
eters have a clear physiological meaning, such as, e.g., neu-
romodulation of a potassium conductance in a central ner-
vous system neuron �25,70�, encoding of environmental
electrical or thermal stimuli by a sensory receptor neuron �8�,
or the pathophysiological relevant oscillatory response of
dorsal root ganglion cells to nerve injury resulting from
changed ionic conductance balances �7,9,29�.

So far, dorsal root ganglion cells are the best example for
a pathophysiological relevance of noisy subthreshold oscilla-
tions, and shark electroreceptors are the best example for the
direct and differential encoding of sensory stimuli using this
mechanism. In both cases, the interplay of oscillations and

FIG. 7. �a� Mean spike frequency F �Hz� versus temperature T
�°C� for different values of applied current �Iapp=1.3, 1.5, 1.7, 2.0,
and 2.5 mA/cm2�. �b� Mean spike frequency F �Hz� versus Iapp

�mA/cm2� for different values of the temperature �T=15, 20, 25,
30, and 35 °C�.
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noise provides for a large sensitivity, and in the case of the
electroreceptor also for differential encoding of electrical and
thermal sensory stimuli by selective modulation of the noisy
oscillations. Although several differences exist between cor-
tical neurons, dorsal root ganglion cells, and sensory recep-
tors including the respective specific biological equipment,
our study shows that some of the relevant behaviors can be
represented with a simplified and generalized ionic conduc-
tance model. Being inherently noisy and tentatively oscilla-
tory due to their nonlinearity, it seems that neurons have
learned to use the two features for neuromodulation and sig-
nal encoding under physiological and pathophysiological

conditions. Our study here is limited to neuromodulation and
stimulus encoding at the single neuron level. We suggest that
future studies should also consider the described effects with
respect to coupled neurons and larger-scale neuronal net-
works.
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